Introduction to Object-Oriented Programming with Ruby

Flow Control, Part I

August 18th, 2008

The goal of this session is to introduce the following concepts in Ruby:

The = and == operators

if-elsif-else

unless

The special object called self

Iterator methods

Blocks

We will also use concepts introduced in previous sessions:

Method chaining

The return keyword

· Use the = operator to assign values:

x = 1

· Use the == operator to check to see if something is equal to something else:

puts 'x equals 1' if x == 1

· Flow control in Ruby is similar to flow control in SAS.

· The syntax for if-then-else is illustrated in the following code example (that elsif isn't a typo):

x = 1

if x == 1

 puts 'x equals 1'

elsif x == 2

 puts 'x equals 2'

else

 puts “x isn't equal to 1 or 2”

end

· The unless statement is the opposite of if. Use unless if you want something to execute when a condition isn't met:

x = 2

puts “x isn't equal to 1” unless x == 1

· The special object self refers to the object that the Ruby interpreter is working on, as in these examples:

class Array

 puts self

 def backwards

 self.reverse

 end

end

puts [1, 2, 3].backwards

· Iterator methods, not surprisingly, iterate over values in objects. Though you can use statements like for and do in Ruby, they are actually not as common as iterator methods.

· The most commonly used iterator is the each method:

['Cat', 'Dog', 'Mouse'].each { |e| puts e }

· The each method does not change the original array, and it returns the original array. The each method is generally used to execute some code on all of the elements in an array (like print them to the console), and is not used to create new objects.

· Other iterator methods are used to create new objects. The collect and select methods are good examples of this.

· The collect method iterates through each value of the array and returns a new array with the elements of the old array modified by code in the block:

new_array = [1, 2, 3].collect { |e| e.to_f }

· The select method creates a new array with the subset of the elements of the original array that meet the criteria in the block:

new_array = [1, 2, 3].select { |e| e > 1 }

· Blocks are a topic of a couple of sessions in their own right. Suffice it to say for now that they allow you to exit a method, do some stuff, and then go back into the method. They are a very powerful feature of Ruby that we will use many times in the descriptive statistics example.

· Method chaining is a technique that I introduced in the Classes and Methods, Part I lesson plan. Method chaining is where you have an object and call a method on that object. Since the return value of that method is another object, you may call another method on that object (providing that object has that second method defined). You can continue to do this for many, many successive method calls.

· The following in a nonsense use of method chaining, where the result is an object equal to the original object:

[1, 2, 3].reverse.reverse

· This is a much more useful example of method chaining, where you ask the Ruby interpretor whether the current object is a subclass of the Numeric class. The return value is true when called on a number (regardless of whether it is a Float, Fixnum, or Bignum), and false otherwise:

class Object

 def is_numeric?

 self.class.ancestors.include? Numeric

 end

end

puts 1.is_numeric?

puts 1.2333.is_numeric?

puts 100000000000000000000000000000000.is_numeric?

puts 'cat'.is_numeric?

puts ['x', 'y', 'z'].is_numeric?

· The return keyword is used to exit from a method:

def students

 ['Tom', 'Boxun', 'Chris', 'John', 'Christophe', 'Yiqiang'].each do |s|

 puts s

 return if s == 'Christophe'

 end

end

students

· The return keyword is optional in many cases. Ruby methods return the last thing that they evaluate. In this example, the return value of the times22 method is 220. This works even though there is no explicit return:

def times22(number)

 22 * number

end

result = times22(10)

puts result

