Introduction to Object-Oriented Programming with Ruby

Classes and Methods, Part II

August 25th, 2008

The goal of this session is to introduce the following concepts in Ruby:

Variable Scope

Global variables

Class variables

Constants

The nil object

The +=, -=, *= and /= methods

Class methods

Instance variables

Instance methods

The attr_accessor method

Local variables

Encapsulation

Refactoring

Variable Scope

· Variable scope refers to where in the program variables are defined and available.

Global Variables

· Global variables are available everywhere in your Ruby program.

· Global variables begin with a $.

· Experienced Ruby programmers tend to avoid creating global variables if at all possible. I believe that it is easier to avoid creating global variables in Ruby than it is to avoid creating global macro variables in SAS.

· The Ruby interpreter creates many global variables automatically for every Ruby program. $! is an example of such a variable. It is equal to the latest error message. This global variable is probably used a decent amount for debugging your programs.

· It is considered acceptable to use the out-of-the-box global variables.

Class Variables

· Class variables are variables that are available to all objects of a particular class, and even to the class itself.

· There does not need to be any objects of a given class for there to be class variables in the class.

· Class variables begin with @@.

· They are often used to keep track of instances of a given class, and are sometimes used to store values that are the same for all objects made out of a class, such as the months of the year, days of the week, or the value of Pi.

· Constants begin with a capital letter. Unlike in Java, constants can actually be changed in Ruby. If you change a Ruby constant, the Ruby interpretor will issue a warning but will not halt the execution of the program. It is not considered optimal to change constants.

· The following example adds two class variables, @@counter and @@PI:

class DescriptiveStatistics

 @@counter = 0

 @@PI = 3.14159265358979323846

 def initialize(arr)

 @@counter += 1

 arr.sort!

 @n = some code...

 @mean = some code...

 @median = some code...

 @variance = some code...

 @standard_deviation = some code...

 @minimum = some code...

 @maximum = some code...

 end

end

[I will insert the appropriate code into the DescriptiveStatistics class above after we've had the chance to go over your homework in Monday's class.]

· I set @@counter to 0 when defining this class; without this line, @@counter will always be equal to the Ruby object called nil.

· nil is roughly equivalent to null in SAS.

· += is a method call that increments its receiver by the number that follows. -=, *= and /= are similar methods that do the expected math. @@counter += 1 is a shorthand way to write:

@@counter = @@counter + 1

· I've capitalized both letters in @@PI in the example above. Though you only need to capitalize the first letter to make it a constant, you will often see all of the letters in constants capitalized to set them apart from variables.

Class Methods

· Class methods can be called directly on classes, rather than on objects of classes.

· They are often used to access class variables, though you do not have to use a class method to get at a class variable.

· The code example above that added the @@counter and @@PI class variables to our DescriptiveStatistics class is good, but on its own it is not that useful. There is no way to access either variable. (Actually, the way I have written it, there is no way to access the instance variables @n, @mean, @median, @variance, @standard_deviation, @minimum and @maximum, either.)

· I've added class methods to access the class variables in this example:

class DescriptiveStatistics

 def DescriptiveStatistics.PI

 @@PI

 end

 def self.counter

 @@counter

 end

end

puts 'PI = ' + DescriptiveStatistics.PI.to_s

puts '# of DescriptiveStatistics objects = ' + DescriptiveStatistics.counter.to_s

· There are two ways to define a class method. One uses the name of the class, then a dot, then the method name. The other uses self, then a dot, then the method name. Remember that self in this context is the name of the class, DescriptiveStatistics.

· Many people prefer the second way to create class methods. Can you think of the reason why this is the case?

· What do you think would happen if I had not included the to_s method calls at the end of the last two lines in the code example above?

Instance Variables

· Instance variables are variables that are unique to each instantiated object of a class.

· In the following example, is the instance variable @n the same variable in the stats1 object as the instance variable @n in the stats2 object?

stats1 = DescriptiveStatistics.new([1, 2, 3])

stats2 = DescriptiveStatistics.new([1, 2, 3])

· Is the class variable @@counter the same variable in stats1 as @@counter in stats2?

· As I mentioned above, there is so far no way to access the instance variables @n, @mean, @median, @variance, @standard_deviation, @minimum and @maximum. This is an example of encapsulation, a concept which is explained later on in this lesson plan.

Instance Methods

· Instance methods can only be called on instantiated objects of a class.

· They cannot be called on classes themselves:

class DescriptiveStatistics

 def n

 @n

 end

end

puts DescriptiveStatistics.n # This will cause an error.

· With the following code, we make all of the instance variables that we've defined so far in DescriptiveStatistics available to code outside of the class:

class DescriptiveStatistics

 def n

 @n

 end

 def mean

 @mean

 end

 def median

 @median

 end

 def variance

 @variance

 end

 def standard_deviation

 @standard_deviation

 end

 def minimum

 @minimum

 end

 def maximum

 @maximum

 end

end

stats = DescriptiveStatistics.new([1, 2, 3])

puts 'Mean of the [1, 2, 3] object = ' + stats.mean.to_s

puts 'Median of the [1, 2, 3] object = ' + stats.median.to_s

· It is tedious to create methods for instance variables like this, so Ruby provides an elegant shorthand method called attr_accessor:

attr_accessor :n, :mean, :median, :variance, :standard_deviation, :minimum, :maximum

· In Ruby, it is more common to use underscores to separate multiple word variable names and method names (like in @standard_deviation and standard_deviation) than camel case (standardDeviation). Using the camel case for classes, on the other hand, is common. This is not enforced by the Ruby interpreter, but is a user convention.

Local Variables

· Local variables are local only to where they are created.

· They begin with a letter or underscore.

· The arr object that gets passed into instantiated objects of the DescriptiveStatistics class is a good example of a local variable. If you tried to access arr in the n method, you would get a variable not defined exception; there is no arr variable defined in any of the methods other than initialize.

Encapsulation

· Encapsulation is sometimes called information hiding.

· Encapsulation is the principle in object oriented programming where the internal workings of classes are hidden from the applications that use them.

· It is good design to expose only those variables and methods to the outside world that absolutely must be exposed. It would not make sense in our DescriptiveStatistics example if there were no methods to get access to @n, @mean, @median, @variance, @standard_deviation, @minimum and @maximum. There must be what's called accessor methods for all of these instance variables. On the other hand, there does not need to be an accessor method for the sorted arr variable; this is a local variable in the initialize method that only needs to be available in that method. The arr local variable needs to be sorted in order to calculate median successfully, but you would not want to change the original array (which self.sort! Would do). Nor would you want to create an accessor method to provide the code outside of the DescriptiveStatistics class access to the sorted array; this would be overkill.

· Encapsulation makes it relatively easy to make design changes to classes. For example, if you want to change the way the median is calculated in our DescriptiveStatistics class, that would not be a problem, since the rest of your code does not care how median is calculated. The code that used the DescriptiveStatistics class and median instance method only cares that median and the other statistics are calculated correctly (of course) and that the interface with the class stays the same.

Refactoring

· Refactoring is the process of changing code that make it more robust, improve its readability and simplify its structure while maintaining the same functionality.

· According to Wikipedia, refactoring is an integral part of a type of programming called agile programming or extreme programming, where programmers first write unit tests, then write code, then contiunuously revise the code to make it better..

· Though we don't (yet) do agile programming in Statistical Programming, we of course often refactor our code to make incremental improvements.

