Introduction to Object-Oriented Programming with Ruby

Classes and Methods, Part I

The goal of this session is to introduce the following concepts in Ruby:

Inheritance

Superclasses

Subclasses

Class methods

Instance methods

Object dot notation

Method return values

Method chaining

· Classes are the primary building blocks in object-oriented programming.

· The defining features of objects are state and behavior.

· Classes are two things in Ruby:

· They are objects in their own right:

puts String.class

puts String.methods.sort

· They are also blueprints that can be used to create other objects:

class Animal

 def speak

 'Hi!'

 end

 end

a = Animal.new

puts a.class

 puts a.speak

· The content inside classes or methods is indented by two spaces. This is not enforced by the Ruby interpreter. It is a convention that everybody in the Ruby community seems to follow.

· Ruby, like Java, and unlike C++, allows only single inheritance: all Ruby classes but the top one in the hierarchy inherit from one and only one parent class. The top class is Object in Ruby v1.8.6.

· You can find out the parent classes in Ruby by asking the Ruby interpreter:

puts Dog.ancestors

· The Animal class in the example above inherits from the Object superclass, which is the parent class of all classes for which there is no parent specified. Writing class.Animal is no different than writing class.Animal < Object.

· You can make a subclass out of (almost) any class:

class Mammal < Animal

 def speak

'Hi, I am a mammal.'

 end

end

m = Mammal.new

puts m.class

 puts m.speak

class Dog < Mammal

 def speak

 'Woof!'

 end

end

d = Dog.new

puts d.class

 puts d.speak

· In the above examples, the Animal class inherits from the Object class. It has all of the methods and variables that Object has, plus the one additional method speak.

· The Mammal class inherents from the Animal class and has all of the methods that Animal has. It overrides the speak method.

· The Dog class inherents from Mammal and has all of the methods that Mammal has, plus it also overrides the speak method.

· The hierarchy is Object > Animal > Mammal > Dog.

· Object is said to be a superclass of Animal, which in turn is a superclass of Mammal and so on. Dog is a subclass of Mammal, which is a subclass of Animal and so on.

· The 'super' in superclass means that it is higher in the hierarchy chain. Subclasses almost always have more functionality than their superclasses.

· You can create a new object out of a class in several ways. The most common way is with the new method. Creating an object is called instantiating an object. The a object is instantiated with the line a = Animal.new.

· There are 7 methods in the example code above. The puts method is a special method that can be called anywhere in Ruby code. The methods called class, methods, new and ancestors are class methods. The sort and speak methods are instance methods.

· Class methods are called directly on the class object itself.

· Instance methods are called only on instances of a class. In other words, instance methods can only be called on objects that were created out of classes.

· All methods are called on an object. This is true even if there doesn't seems to be an object, as in the special case of the puts method.

· The object on which the method is called is often called the receiver.

· The object and the method are separated by a period. This is often called object dot notation.

· All methods return something. Since everything in Ruby is an object, all methods return one or more objects.

· The return value of a method is always the last item that the method evaluates. You can force the method to finish its execution by using the return keyword.

· Sometimes the return value of a method is trivial and you don't care about it. More often than not, though, the return value is meaningful and useful. For example, the return value of the speak method in all instances of the Dog class is the String 'Woof!'.

· Methods can be chained together, as is the case with the line puts String.methods.sort. This is a powerful technique. Method chaining makes it possible to write complex programs that take up just one line. For example, I believe that it would be possible to write an entire statistical program, say for adverse event frequencies, in just a single line.

